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What is SLAM?

m SLAM is a software model checking project
@ Microsoft Research MSR

m Goal:

0 Check automatically C programs (system software)
against safety properties using model checking.

[0 Present property violations as error traces in the source
code.

m Application domain: device drivers

Used internally inside Windows for driver verification.
Planned to be released for third-party driver developer.
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SLAM — Software Model Checking

Given a safety property to check on a C program P, the
SLAM process iteratively refines a boolean program
abstraction of P using three tools:

0 C2bp: predicate abstraction, abstracts P into boolean
program BP(P,E) with respect of predicates E over P

[0 Bebop: tool for model checking boolean programs,
determine if ERROR is reachable in BP(P,E)

0 Newton: discovers additional predicates to refine boolean
program by analyzing feasiblility of paths in P
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I Predicates from
instrumentation C2bp

Is ERROR reachable?
Bebop
P “
Yes, path p No
Is ERROR |
reachable? Return “No”
Is p feasible in P?
Newton

RN

No, explanation Yes don't know

|
) "l Return
Return "Yes", p  “4on't know"
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Why Driver Domain?

Most drivers run within the Windows kernel

Can cause the kernel to crash or hang

Very complex and unpredictable environment
Drivers are mostly written by third-party developer

Driver failures are perceived by the end-user as a
windows failure

Automated analysis of drivers
m Relatively small (< 100K LOC)
m \WDM usage rules could be applied for all drivers
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SLAM - History

m Initial discussions: Thomas Ball, Sriram K. Rajamani @ Microsoft Research
MSR

m First technical report January 2000
m  Spring 2000

O Bebop model checker
m Summer 2000

O Initial c2bp implementation

0 Model checked a safety property of an NT driver

0 Hand instrumented code/predicates discovered by hand
m  Autumn 2000

O Predicate discovery (Newton)

0 Checked properties of drivers from DDK

0 Hand instrumented code/automatic discovery of predicates
m  Winter 2000

0 SLIC specification language
m  Spring 2001

0 Found first real error in production code

O Total automation (manual model specifications)

m TACAS 2001: Boolean and Cartesian Abstractions for Model Checking C
Programs, April 2001, Genoa, ltaly.
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Static Driver Verifier - History

m Research Prototype SLAM - Production Tool SDV

m March 2002
0 Bill Gates Review
m Mai 2002

0 Windows committed to hire two Ph.D.s in model checking to support
Static Driver Verifier

m  Autumn 2002
O Joint Project between MSR and Windows

O Initial release of SDV 1.0 to Windows (friends and family)
(SLAM engine, interface usage rules, kernel model, GUI and scripts)

m April 2003

O wide release of SDV 1.2 to Windows
(any internal driver developer)

m November 2003

0O SDV 1.3 released at Driver Developer Conference (better integration,
more rules, better models)

m  Since 2004 SDV fully transferred to Windows (6 full-time positions)
m Public release planned for end of 2004 ???
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Bebop Model Checker

decl g; bebop v1.0: (c) Microsoft Corporation.
Done creating bdd variables
main () Done building transition relations
begin
decl h; Label R reachable by following path:
[6] h := tg:
[7] A(g,h); Line 12 State g=1 h=0
[g] skip; Line 11 State g=1 h=0
[9] Alg,h); Line 10 State g=1 h=0
[10]  skip; Line 22 State g=1 al=1 a2=0
[11]  if (g) then Line 24 State g=1 al=0 a2=1
[12] skip; Line 20 State g=1 al=0 a2=1
else Line 21 State g=1 al=1 a2=0
[14] skip; Line 20 State g=1 al=1 a2=0
fi Line 9 State g=1 h=0
end Line 8 State g=1 h=0
Line 22 State g=1 al=1 a2=0
Afal,a2) Line 24 State g=1 al=0 a2=1
begin Line 20 State g=1 al=0 al=1
[20] if (al) then Line 21 State g=1 al=1 a2=0
[21] A(a2,al); Line 20 State g=1 al=1 a2=0
[22] skip; Line 7 State g=1 h=0
else Line 6 State g=1
[24] g = a2;
fi
end
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Model Checking Challenges

Thousands of lines of code
Recursive procedures
Infinite Control

Infinite Data

m SLAM Solutions:

> Boolean transformation
> Predicate Abstraction
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Boolean Programs

C program, but only boolean variables

Boolean variables represent finite sets of dataflow facts
All C control-flow primitives (condition, loops, ...)

No pointers

Procedures with call-by-value parameter passing

m Non-deterministic choice operator *

do {
b = true;
it (){
b =Db ? false : *;
}

} while ('b);
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SLIC

m Low-level specification language
m Specifies temporal safety properties/rules

m Defines state machine, that monitors behavior of a C
program

m Atomic propositions of a SLIC specification are boolean
functions

m Suitable for expressing control-dominated properties
] e.g. proper sequence of events
[0 can encode data values inside state



Usage Rule for Locking

State Machine SLIC

int locked = 0O;

U AcquireLock.call {
iIT (locked==1) {
abort;

} else {
locked=1;
¥

Unlocked

}

ReleaselLock.call {
1T (locked==0) {
abort;

} else {
locked=0;
}
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The SLAM Process

predicates

m boolean program
vAg

predicates bebop < >
SLIC rules < V 2

A

path p
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Example Device Driver API usage

Invoke SLIC rules

AcquirelLock(&devices>writelListLoc
AcquirelLock.call();
deviceNoOld = deviceNo;
more = devices->Next;

(more){

ReleaselLock(&devices->writeljistLock);
ReleaselLock.call();
deviceNo++;

} while (deviceNoOld !'= deviceNo)/;

Releaselock(&devices->writeListLock);
ReleaselLock.call();

Does this device driver violate the locking rules ?
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C2bp: Boolean Abstraction

do {

AcquirelLock(&devices>writeListLock);

it (" ){

ReleaselLock(&devices->writeListLock);

F
} while ( * );

Releaselock(&devices->writeListlLock);



Bebop: Model Checking on P’ = BP(P,E)

do {
L AcquirelLock(&devices>writeListLock);

O 0if(* )

ReleaselLock(&devices->writeListLock);

F
} while ( * );

Releaselock(&devices->writeListlLock);



Bebop: Model Checking on P’ = BP(P,E)

1 do {
3 AcquirelLock(&devices>writeListLock);

s ©O_ it (*){

o) ReleaselLock(&devices->writeListLock);

¥
13 } while ( * );

15 ReleaselLock(&devices->writelListlLock);



Newton: Path Feasibility

do {

AcquirelLock(&devices>writeListLock);

deviceNoOld = deviceNo;
more = devices->Next;

1T (more){
ReleaselLock(&devices->writeListLock);

deviceNo++;

¥} while (deviceNoOld != deviceNo);

Releaselock(&devices->writeListLock);
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Newton: New Predicate b for P’
b : (deviceNoOld == deviceNo)

do {
AcquirelLock(&devices>writeListLock);

b = true;
more = devices->Next;

1T (more){
ReleaselLock(&devices->writeListLock);

b =Db ? false : *;

+ i
} while(!b);

Releaselock(&devices->writeListLock);
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C2bp: Refined Boolean Program

do {
AcquirelLock(&devices>writeListLock);
b = true;
it (){
ReleaselLock(&devices->writeListLock);
b =D>b ? false : *;
} ﬁLile ('b);

Releaselock(&devices->writeListLock);



Bebop: Model Checking refined Program

do {

b G AcquirelLock(&devices>writeListLock);
b (L) b = true;
b, \If ()

ReleaselLock(&devices->writeListLock);
b =Db ? false : *;

¥
b + while (!b);

Releaselock(&devices->writeListLock);
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I Predicates from
instrumentation C2bp

Is ERROR reachable?
Bebop
P “
Yes, path p No
Is ERROR |
reachable? Return “No”
Is p feasible in P?
Newton

RN

No, explanation Yes don't know

|
) "l Return
Return "Yes", p  “4on't know"
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Complexity

m \Worst-case run-time complexity of Bebop and C2bp is
linear in the size of the program's control flow graph, and

exponential in the number of predicates used in the
abstraction.

O(E x 29*
E: # Edges in control flow graph

g+l: Maximal number of global
and local variables in scope

m Newton scales linearly with path length.
O(|p]), Ip|: length of path
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Conclusion

m Hard to specify OS model and SLIC specifications

- Paper “Automatic Creation of Environment
Models via Training”

m Current versions of SDV:

[0 about 70% true driver errors, 30% warnings or
Informational errors (noise).

m >200K LOC - ~ have hour
m Full automatically
m Integrated as standard tool @ Microsoft

- Improves SW Quality
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Developer Comments

m “This bug would be a really hard bug to find other than
with a tool like SDV. There are just too many details to
keep track of to have a good chance of finding it.”

m “These are all real, difficult to discover bugs. Good
work!”

m “This bug would have been very difficult to find by
Inspection and it was one of those bugs that would be
near-impossible to reproduce...”

m “Fixing this bug will definitely stop some unexplainable
and hard to debug random system crashes in the future.”
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