Modeling and Analysis of Software Systems

Boolean and Cartesian
Abstraction for

Model Checking C Programs

Thomas Ball, Andreas Podelski, Sriram K. Rajamani @ MSR

Werner A. Konig

Prof. Dr. Stefan Leue 01/25/2005
Chair for Software Engineering University of Konstanz

-

Outline

Overview
Project Components
History
Challenges
Boolean Programs and Rules
Example
0 Abstraction
0 Model Checking
O Refinement
m Complexity
m Conclusion

" A
What is SLAM?

m SLAM is a software model checking project
@ Microsoft Research MSR

m Goal:

0 Check automatically C programs (system software)
against safety properties using model checking.

[0 Present property violations as error traces in the source
code.

m Application domain: device drivers

Used internally inside Windows for driver verification.
Planned to be released for third-party driver developer.

. Microsoft Fross
Pr[oglrgmmmg

Rules

Static Driver Verifier
Read for
< understanding

Drive testing

Precise tools
APl Usage Rules

SLIC

Software Model Testing
Checking
=node.sl); | ++ V' Pacs end() 1oui€;{

New API rules

Development

Source Code

- S

Static Driver Verifier

Driver sources Result

GUIETN
clriver.n

driver.c

OSHHIGEE]

gt

SLAM — Software Model Checking

Given a safety property to check on a C program P, the
SLAM process iteratively refines a boolean program
abstraction of P using three tools:

0 C2bp: predicate abstraction, abstracts P into boolean
program BP(P,E) with respect of predicates E over P

[0 Bebop: tool for model checking boolean programs,
determine if ERROR is reachable in BP(P,E)

0 Newton: discovers additional predicates to refine boolean
program by analyzing feasiblility of paths in P

'_
I Predicates from
instrumentation C2bp

Is ERROR reachable?
Bebop
P “
Yes, path p No
Is ERROR |
reachable? Return “No”
Is p feasible in P?
Newton

RN

No, explanation Yes don't know

|
) "l Return
Return "Yes", p “4on't know"

gt

Why Driver Domain?

Most drivers run within the Windows kernel

Can cause the kernel to crash or hang

Very complex and unpredictable environment
Drivers are mostly written by third-party developer

Driver failures are perceived by the end-user as a
windows failure

Automated analysis of drivers
m Relatively small (< 100K LOC)
m \WDM usage rules could be applied for all drivers

"
SLAM - History

m Initial discussions: Thomas Ball, Sriram K. Rajamani @ Microsoft Research
MSR

m First technical report January 2000
m Spring 2000

O Bebop model checker
m Summer 2000

O Initial c2bp implementation

0 Model checked a safety property of an NT driver

0 Hand instrumented code/predicates discovered by hand
m Autumn 2000

O Predicate discovery (Newton)

0 Checked properties of drivers from DDK

0 Hand instrumented code/automatic discovery of predicates
m Winter 2000

0 SLIC specification language
m Spring 2001

0 Found first real error in production code

O Total automation (manual model specifications)

m TACAS 2001: Boolean and Cartesian Abstractions for Model Checking C
Programs, April 2001, Genoa, ltaly.

" A
Static Driver Verifier - History

m Research Prototype SLAM - Production Tool SDV

m March 2002
0 Bill Gates Review
m Mai 2002

0 Windows committed to hire two Ph.D.s in model checking to support
Static Driver Verifier

m Autumn 2002
O Joint Project between MSR and Windows

O Initial release of SDV 1.0 to Windows (friends and family)
(SLAM engine, interface usage rules, kernel model, GUI and scripts)

m April 2003

O wide release of SDV 1.2 to Windows
(any internal driver developer)

m November 2003

0O SDV 1.3 released at Driver Developer Conference (better integration,
more rules, better models)

m Since 2004 SDV fully transferred to Windows (6 full-time positions)
m Public release planned for end of 2004 ???

<23 SDV Report - Microsoft Internet Explorer

File Edit Wiew Favorites Tools Help o
Qe - O @ @ .ih /Qs.aarch in?antes @ et @ f::*_; =-J#A g Fails rule (single violatian) g Fails rule (multiple violations)
Address |87 KALTP_24isdv_originallsdvireport btm vs’" Fasses rule ==| |Rule not applicable
? Ma winlations found E Currently checking
].y, @ |Out of resources | |Analysis failed
S h
Drivers 26 zn 1 E E] S~ =~ BB
= e 2 = = = @z = = 3 (= . a
Rules 82 Lm cROEE L g §*'§ ﬁ,,,gfﬂ;}g%i:
Potential Checks 2132 » B G B EE = g CcLEREREREELCEREEBER = 3
o S 2R ;:ﬁ[:‘:;;ng'wﬁ_a Q:E‘ﬁﬁr'—.'ﬁ-’gwwg:
Breakdown — 1167 v 847 @ 2B -.-::zge-fa;; EEECCEREePREER
ol el ECEEREERELRE Fﬁ:»"ﬁ‘“-m,&&=.§
®@ 28G 0 FCEECEEREERRPREEEREEERREBRERELEE
v 22@® 68 S EEREEEEERELEREREEEERREEEEEE
; SERRBRREEREESEREE S S EEPRPELEEFEREEEER
a4 0% 0 EEEEREREEEEEREEFREEEEEELRBER
Checks not started 0o EMEE é B ~ B = - “TRE § ol EE £
Errors found g @ & g = S 2 2R =
= %«é i :?:
cancelSpinlock \/v”v"vfv’\/v’v’\/v’v’v’v’v’v’v’v’v’v’v’\/v’v’v’v’v’v’
startIoCancel — ==V —-=—VVVV - VV V- V—-—-V-—-=vVvVV-—_—vVv
addDevice v ——VvVVVVvVvY —vVVvyY - vVyVvVvVvVvVvv —vVVYy ——
lowerDriverBeturn VWWWWW&/W\/WW\/WW’\/WW\/WW\/W‘@®WV"’VJ
TargetRelationNeedsRef - =vVVVVVY - VvVVVY - VVVVVVV-VVY/Y—~—
DoubleCompletion VVVvVvvVvvo00ve/vVvvvVvvVVVVYVVVVYVVY
Prematureskip - =vVVVVV - VVOV - VVVVVVV - VVV~—~—
EeWaitDeadlock - —vVVvVvVvVVvVvyY VvVVYVY - VvVVVVVVVY-VVVY ——
WmiComplete VvV vvvvvVvvvvvvvvVVvVvVVVVVVVYVvyy
UmiForward VVyVvvvvvvvvvvvVvvvvvVvvVvVVVVVYVvyy
IrpProcessingComplete OvvVvvvVvvVvvVvVVVVVVVVVVYy OvVV VYV v v
MarkIrpPending VVVvVVvVVOvVYOVVVVVYVVYYVVVYVOORVY
PendedCompletedRequast V‘/%M@%M@W’WE/@@E/V,@E/QME/W\/E)@‘q/‘t/\-f,!
< | &
& %J Lacal intranet

Bebop Model Checker

decl g; bebop v1.0: (c) Microsoft Corporation.
Done creating bdd variables
main () Done building transition relations
begin
decl h; Label R reachable by following path:
[6] h := tg:
[7] A(g,h); Line 12 State g=1 h=0
[g] skip; Line 11 State g=1 h=0
[9] Alg,h); Line 10 State g=1 h=0
[10] skip; Line 22 State g=1 al=1 a2=0
[11] if (g) then Line 24 State g=1 al=0 a2=1
[12] skip; Line 20 State g=1 al=0 a2=1
else Line 21 State g=1 al=1 a2=0
[14] skip; Line 20 State g=1 al=1 a2=0
fi Line 9 State g=1 h=0
end Line 8 State g=1 h=0
Line 22 State g=1 al=1 a2=0
Afal,a2) Line 24 State g=1 al=0 a2=1
begin Line 20 State g=1 al=0 al=1
[20] if (al) then Line 21 State g=1 al=1 a2=0
[21] A(a2,al); Line 20 State g=1 al=1 a2=0
[22] skip; Line 7 State g=1 h=0
else Line 6 State g=1
[24] g = a2;
fi
end

™ s dvdefe

File Font Trace Tree Source Code Help

Trace Tree

initl
init3z
init3l
p_devaob]
p devob] t
devobi .Dev
devob] two
irp = &har
irp-=Tail.
sdv main
: Stulk dri
l: if (SLAM
MakeChoil
switch
RunDispa
sdv ToG
PIC 5TA
end inf

end inf
betitat
pirp-=C
ps-=Min
stub di
switch
ps-=Maj
PptDisp

[P B - I % IR s Y o s R i Y o

@l >
Step: 1322
State-

S

B

—Source Code

DoubleCompletion.Slic]parallel.h]pdopnp.c]datalink.c debug.c de—harness.c]fdowmi.c]
ieeelZfd.c fdopnp.c]wdmguid.h]ntddpar.h]parport.c diSpatChEEdiEECt-C]fdocloae.c]utila.c]

e
{fcompletio

_——T11-a n

L
W

o B H return PptFdoPower{ Devobi, Icp).
117 } else |

E 118: return PptPdoPower{ Dewvdbi, Icp)
b1 19 }

=120)

L o

. 122: NTSTATUS
-.123: PptDispatchCreateOpen(PDEVICE OBJECT DevObj, PIRP Irp)

124 FFDO EXTENSION fdx = Devobj->DeviceExtension;
125 P5TracelrphArrival { Devcoby, Irp)

E 1Z2a: if{ DevTypeFdo == fdx->DevType | |

:-12?: return PptFdoCreatedpen{ Devobi, Irp)
128 b oelse |

.129: return PptPdoCreatedpen{ Devobj, Irp);
SR]

e ldils)

L. 132: 0O

.133: NTSTATUS
..134: PptDispatchClose PDEVICE OBJECT DevObj, PIRP Irp } |

- doEs PFDO EXTENSION fdx = DevObj->DeviceExtension;
=136 PSTracelrpArrival { Devohi, Irp)

L 137 if{ DevTyperPdo == fdx-=DevType) |

f 138; return PptFdoClose({ Dewvdbi, Icp)

12139 } else |

- 140 return PptPdoClose({ Devdbi, Icp).

..141:)

1142)

Lildds O

.144: NTSTATUS

i 1A Prtnicerat~hrleanun §(PORVTOR AR TIRCT Tietrdiba PTRP Trr 4 |

|

W

File: ../../../.././dispatchredirect.c, Lt i 3e Function 'PptDispatchClose’

Driver: srchkernelhparport Eule: DoubleCompletion Defect: The driver i1s calling IoCompleteRequest twice.

" A
Model Checking Challenges

Thousands of lines of code
Recursive procedures
Infinite Control

Infinite Data

m SLAM Solutions:

> Boolean transformation
> Predicate Abstraction

gt

Boolean Programs

C program, but only boolean variables

Boolean variables represent finite sets of dataflow facts
All C control-flow primitives (condition, loops, ...)

No pointers

Procedures with call-by-value parameter passing

m Non-deterministic choice operator *

do {
b = true;
it (){
b =Db ? false : *;
}

} while ('b);

gt
SLIC

m Low-level specification language
m Specifies temporal safety properties/rules

m Defines state machine, that monitors behavior of a C
program

m Atomic propositions of a SLIC specification are boolean
functions

m Suitable for expressing control-dominated properties
] e.g. proper sequence of events
[0 can encode data values inside state

Usage Rule for Locking

State Machine SLIC

int locked = 0O;

U AcquireLock.call {
iIT (locked==1) {
abort;

} else {
locked=1;
¥

Unlocked

}

ReleaselLock.call {
1T (locked==0) {
abort;

} else {
locked=0;
}

- S

The SLAM Process

predicates

m boolean program
vAg

predicates bebop < >
SLIC rules < V 2

A

path p

| 'l_
Example Device Driver API usage

Invoke SLIC rules

AcquirelLock(&devices>writelListLoc
AcquirelLock.call();
deviceNoOld = deviceNo;
more = devices->Next;

(more){

ReleaselLock(&devices->writeljistLock);
ReleaselLock.call();
deviceNo++;

} while (deviceNoOld !'= deviceNo)/;

Releaselock(&devices->writeListLock);
ReleaselLock.call();

Does this device driver violate the locking rules ?

- S

C2bp: Boolean Abstraction

do {

AcquirelLock(&devices>writeListLock);

it ("){

ReleaselLock(&devices->writeListLock);

F
} while (*);

Releaselock(&devices->writeListlLock);

Bebop: Model Checking on P’ = BP(P,E)

do {
L AcquirelLock(&devices>writeListLock);

O 0if(*)

ReleaselLock(&devices->writeListLock);

F
} while (*);

Releaselock(&devices->writeListlLock);

Bebop: Model Checking on P’ = BP(P,E)

1 do {
3 AcquirelLock(&devices>writeListLock);

s ©O_ it (*){

o) ReleaselLock(&devices->writeListLock);

¥
13 } while (*);

15 ReleaselLock(&devices->writelListlLock);

Newton: Path Feasibility

do {

AcquirelLock(&devices>writeListLock);

deviceNoOld = deviceNo;
more = devices->Next;

1T (more){
ReleaselLock(&devices->writeListLock);

deviceNo++;

¥} while (deviceNoOld != deviceNo);

Releaselock(&devices->writeListLock);

- S
Newton: New Predicate b for P’
b : (deviceNoOld == deviceNo)

do {
AcquirelLock(&devices>writeListLock);

b = true;
more = devices->Next;

1T (more){
ReleaselLock(&devices->writeListLock);

b =Db ? false : *;

+ i
} while(!b);

Releaselock(&devices->writeListLock);

- S

C2bp: Refined Boolean Program

do {
AcquirelLock(&devices>writeListLock);
b = true;
it (){
ReleaselLock(&devices->writeListLock);
b =D>b ? false : *;
} ﬁLile ('b);

Releaselock(&devices->writeListLock);

Bebop: Model Checking refined Program

do {

b G AcquirelLock(&devices>writeListLock);
b (L) b = true;
b, \If ()

ReleaselLock(&devices->writeListLock);
b =Db ? false : *;

¥
b + while (!b);

Releaselock(&devices->writeListLock);

'_
I Predicates from
instrumentation C2bp

Is ERROR reachable?
Bebop
P “
Yes, path p No
Is ERROR |
reachable? Return “No”
Is p feasible in P?
Newton

RN

No, explanation Yes don't know

|
) "l Return
Return "Yes", p “4on't know"

"
Complexity

m \Worst-case run-time complexity of Bebop and C2bp is
linear in the size of the program's control flow graph, and

exponential in the number of predicates used in the
abstraction.

O(E x 29*
E: # Edges in control flow graph

g+l: Maximal number of global
and local variables in scope

m Newton scales linearly with path length.
O(|p]), Ip|: length of path

gt

Conclusion

m Hard to specify OS model and SLIC specifications

- Paper “Automatic Creation of Environment
Models via Training”

m Current versions of SDV:

[0 about 70% true driver errors, 30% warnings or
Informational errors (noise).

m >200K LOC - ~ have hour
m Full automatically
m Integrated as standard tool @ Microsoft

- Improves SW Quality

gt

Developer Comments

m “This bug would be a really hard bug to find other than
with a tool like SDV. There are just too many details to
keep track of to have a good chance of finding it.”

m “These are all real, difficult to discover bugs. Good
work!”

m “This bug would have been very difficult to find by
Inspection and it was one of those bugs that would be
near-impossible to reproduce...”

m “Fixing this bug will definitely stop some unexplainable
and hard to debug random system crashes in the future.”

References

Automatic Predicate Abstraction of C Programs, Thomas Ball, Rupak Majumdar, Todd Millstein, Sriram K. Rajamani, PLDI 2001, SIGPLAN Notices
36(5), pp. 203-213.

Automatic Predicate Abstraction of C Programs (Presentation PLDI 2001)

Automatically Validating Temporal Safety Properties of Interfaces, Thomas Ball, Sriram K. Rajamani, SPIN 2001, Workshop on Model Checking of
Software, LNCS 2057, May 2001, pp. 103-122.

Automatically Validating Temporal Safety Properties of Interfaces (Presentation SPIN 2001)
Bebop: A Path-sensitive Interprocedural Dataflow Engine, Thomas Ball, Sriram K. Rajamani, PASTE 2001.
Bebop: A Path-sensitive Interprocedural Dataflow Engine (Presentation PASTE 2001)

Bebop: A Symbolic Model Checker for Boolean Programs, Thomas Ball, Sriram K. Rajamani, SPIN 2000 Workshop on Model Checking of Software
LNCS 1885, August/September 2000, pp. 113-130.

Bebop: A Symbolic Model Checker for Boolean Programs (Presentation SPIN 2000)

Boolean and Cartesian Abstractions for Model Checking C Programs, Thomas Ball, Andreas Podelski, Sriram K. Rajamani, TACAS 2001, LNCS
2031, April 2001, pp. 268-283.

Boolean and Cartesian Abstraction for Model Checking C Programs (Presentation TACAS 2001)
Boolean Programs: A Model and Process for Software Analysis, Thomas Ball, Sriram K. Rajamani, MSR Technical Report 2000-14.

Checking Temporal Properties of Software with Boolean Programs, Thomas Ball, Sriram K. Rajamani, Workshop on Advances in Verification (with
CAV 2000).

From Symptom to Cause: Localizing Errors in Counterexample Traces, Thomas Ball, Mayur Naik, Sriram Rajamani (POPL 2003).
From Symptom to Cause: Localizing Errors in Counterexample Traces (Presentation POPL 2003)
Generating Abstract Explanations of Spurious Counterexamples in C Programs, Thomas Ball, Sriram K. Rajamani, MSR-TR-2002-09.

Parameterized Verification of Multithreaded Software Libraries, Thomas Ball, Sagar Chaki, Sriram K. Rajamani, TACAS 2001,
LNCS 2031, April 2001, pp. 158-173.

Parameterized Verification of Thread-safe Libraries (Presentation TACAS 2001)
Polymorphic Predicate Abstraction, Thomas Ball, Todd Millstein, Sriram K. Rajamani, MSR-TR-2001-10.
Refining Approximations in Software Predicate Abstraction, Thomas Ball, Byron Cook, Satyaki Das, Sriram K. Rajamani. TACAS 2004.

Relative Completeness of Abstraction Refinement for Software Model Checking, Thomas Ball, Andreas Podelski, Sriram K. Rajamani, TACAS
2002, LNCS 2280, April 2002, pp. 158-172.

Secrets of Software Model Checking (Presentation SAS 2002)
SLIC: A Specification Language for Interface Checking (of C), Thomas Ball, Sriram K. Rajamani, MSR-TR-2001-21.
Specifying and Checking Properties of Software (Presentation CSTB's July 2001 Symposium on Fundamentals of Computer Science, July 2001)

Speeding Up Dataflow Analysis Using Flow-Insensitive Pointer Analysis, Stephen Adams, Thomas Ball, Manuvir Das, Sorin Lerner, Sriram K.
Rajamani, Mark Seigle, Westley Weimer. SAS 2002, LNCS 2477.

The SLAM Project: Debugging System Software via Static Analysis, Thomas Ball, Sriram K. Rajamani, POPL 2002, January 2002, pages 1-3.
The SLAM Project: Debugging System Software via Static Analysis (Presentation POPL 2002)
The SLAM Toolkit, Thomas Ball, Sriram K. Rajamani, CAV 2001.

