Aktuelle Trends der Computergrafik

High Dynamic Range Displays

Werner König

Prof. Dr. O. Deussen AG Computergrafik und Medieninformatik

Outline

- ı. Introduction
- II. Human Perception
- III. Limitation on Displays
- IV. Projector-based Display
- v. LED-based Display
- vi. Conclusion
- VII. Future Work
- VIII. References

Applications (low contrast)

- Astronomy, Medical Analysis
- Image modeling, rendering, processing, compositing
- Entertainment
- User Interface Design
- Research

DEMO (foil, HDRShop)

Luminance

■ Human Luminance Recognition Range: ~ 10⁻⁵ – 10⁴

0.003 cd/m² – 0.00003 cd/m²

0.03 cd/m² – 0.3 cd/m²

300 cd/m² – 30.000 cd/m²

30 cd/m² – 300 cd/m²

3 cd/m² – 30 cd/m²

1 cd/m²

Human Perception

- 9 orders of magnitude totally
- 5 orders effectively simultaneously
- Local contrast perception 150:1
 - Above that → blurry, indistinct
 - Scattering of energy on the retina with higher boundary contrast

Contrast – Bit – Steps

- Just Noticeable Differences (JND)
- Contrast & Spatial Frequency
- Contrast != Bit depth
- 8 bit → 256 tonal steps

Limitations on conventional Displays

- Black state: regardless light transmission
- White state: max. 16% transmission (LCD)
- Limited Dynamic Range
- 8-bit device → 256 tonal steps

Projector-based Display

- Combination of projector and LCD
 - → Brightness increase, keep black state
- LCD as optical filter
- Multiplication of the dynamic range of each modulator

Hardware Setup

- Digital Mirror Device without color wheel 800 : 1
- LCD without backlight and optical layers 300 : 1
- Light output is result of the two modulations: Theoretical Range 240.000 : 1 Imperfections of optics → measured 54.000 : 1
- Luminance: measured 0.05 2.700 cd/m² Lumens
- Combinations: 8-bit devices: 256² = 65536 steps
 → 17.000 distinct luminance levels

Driving the Projector Display

- Problems for correctly rendering HDR images:
 - Projector and LCD aren't linear,
 - Different dynamic range
 - Blurring of the projector image

Pros & Cons

- + High dynamic range
- + High luminance
- Large form factor
- High costs
- High power consumption
- Thermal management problem (noise)
- Need of high video bandwidth
- Calibration issues

LED-based Display

- Active matrix array of ultra bright LEDs as backlight
 - Low resolution, 12 mm diameter
 - High brightness, 250.000 cd/m²
 - No emission in off state

Hardware Setup

- 760 white LEDs (1 Watt, 8-bit Digital-Analog Converter)
- 18,1" LCD with 500:1 and 1280 x 1024
- Max measured Luminance: 8.500 cd/m²
 - Full LED emission & full LCD transmission
- Minimum is complete dark (whole display)
 - LED in off state, LCD pixel black value
 - Min 0.03 cd/m² on checkerboard pattern larger than 20mm (LED emission overlap)

Driving the LED Display

- Contrast over 100.000 : 1, over 17.000 Steps
- Prediction of 1139 JNDs for this luminance range
- Compute intensities for every LED
- LED has wider support
- LCD corrects low LED resolution
 - Over-sharpening LCD image if necessary
 - Mask luminance effects at high contrast boundaries

Image Modulation

High resolution colour LCD

Low resolution AM LED array

High Dynamic Range Display

Pros & Cons

- + High dynamic range
- + High luminance
- + Same form factor as conventional LCD
- + Costs less than Projector-based Display
- + About the same power consumption as LCD

Pros & Cons

- + No special thermal management needed
- + Small video bandwidth
- Complex LED image rendering (resolved on new GPUs)
- → Ready for home and commercial use

Conlusions

- High Contrast, no disadvantages
- Flashing LED backlight reduce motion blur artifacts
- Simplifies problems of global luminance nonuniformity
- Room has to be really dark to see luminance differences under 0.1 cd/m²
 - → decrease range

Future Work

 Image computation on display hardware (16 bit digital input)

Brightness for directing user attention, HCI

Triple color LEDs or different color LEDs (98% color gammut instead of 66%)

CCIR-709 gamut

References

- Barten, P., Physical model for the contrast sensitivity of the human eye, SPIE, vol. 1666, P57-72, 1992.
- Barten, P., Spatio-temporal model for the contrast sensitivity of the human eye and its temporal aspects, SPIE, vol. 1913-01, 1993.
- Debevec, P., Malik, J., Recovering High Dynamic Range Radiance Maps from Photographs, SIGGRAPH 1997.
- Goldstein, B., Sensation and Perception, Wadsworth Publishing Company, 2001.
- Seetzen, H., Heidrich W., Stuerzlinger, W., Ward, G., Whitehead, L., Trentacoste, M., Gosh, A., Vorozcovs, A., A High Dynamic Range Display, Using Low and High Resolution Modulators, SIGGRAPH 2004.
- Seetzen, H., Whitehead, L., Ward, G., A High Dynamic Range Display, Using Low and High Resolution Modulators, SIGGRAPH 2003.
- HDRShop, Paul Debevec, http://www.debevec.org/HDRShop/
- OpenEXR, Industrial Light + Magic, http://www.openexr.net/
- Sunnybrook Technologies, http://www.sunnybrooktech.com/

Tone Reproduction Methods

St. Peters Light Probe

Luminance Example

