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What is SLAM?

SLAM is a software model checking project 
@ Microsoft Research MSR

Goal:
Check automatically C programs (system software) 
against safety properties using model checking.
Present property violations as error traces in the source 
code.

Application domain: device drivers

Used internally inside Windows for driver verification.
Planned to be released for third-party driver developer.
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SLAM – Software Model Checking

Given a safety property to check on a C program P, the 
SLAM process iteratively refines a boolean program 
abstraction of P using three tools:

C2bp: predicate abstraction, abstracts P into boolean 
program BP(P,E) with respect of predicates E over P

Bebop: tool for model checking boolean programs, 
determine if ERROR is reachable in BP(P,E)

Newton: discovers additional predicates to refine boolean 
program by analyzing feasibility of paths in P
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Why Driver Domain?

Most drivers run within the Windows kernel
Can cause the kernel to crash or hang
Very complex and unpredictable environment 
Drivers are mostly written by third-party developer
Driver failures are perceived by the end-user as a 
windows failure

Automated analysis of drivers
Relatively small (< 100K LOC)
WDM usage rules could be applied for all drivers



SLAM - History
Initial discussions: Thomas Ball, Sriram K. Rajamani @ Microsoft Research 
MSR
First technical report January 2000
Spring 2000

Bebop model checker
Summer 2000

Initial c2bp implementation
Model checked a safety property of an NT driver
Hand instrumented code/predicates discovered by hand

Autumn 2000
Predicate discovery (Newton)
Checked properties of drivers from DDK
Hand instrumented code/automatic discovery of predicates

Winter 2000
SLIC specification language

Spring 2001
Found first real error in production code
Total automation (manual model specifications)

TACAS 2001: Boolean and Cartesian Abstractions for Model Checking C 
Programs, April 2001, Genoa, Italy.



Static Driver Verifier - History
Research Prototype SLAM Production Tool SDV

March 2002
Bill Gates Review

Mai 2002
Windows committed to hire two Ph.D.s in model checking to support 
Static Driver Verifier

Autumn 2002
Joint Project between MSR and Windows
Initial release of SDV 1.0 to Windows (friends and family)
(SLAM engine, interface usage rules, kernel model, GUI and scripts)

April 2003
wide release of SDV 1.2 to Windows 
(any internal driver developer)

November 2003
SDV 1.3 released at Driver Developer Conference (better integration, 
more rules, better models)

Since 2004 SDV fully transferred to Windows (6 full-time positions)
Public release planned for end of 2004 ???
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Model Checking Challenges

Thousands of lines of code
Recursive procedures 
Infinite Control
Infinite Data

SLAM Solutions:
Boolean transformation
Predicate Abstraction



Boolean Programs

C program, but only boolean variables
Boolean variables represent finite sets of dataflow facts
All C control-flow primitives (condition, loops, …)
No pointers
Procedures with call-by-value parameter passing

Non-deterministic choice operator *
do {

b = true;

if (*){
b = b ? false : *; 

}
} while (!b);

do {
deviceNoOld = deviceNo; 
more = devices->Next;
if (more){

deviceNo++;
}

} while (deviceNoOld != deviceNo);



SLIC

Low-level specification language
Specifies temporal safety properties/rules
Defines state machine, that monitors behavior of a C 
program
Atomic propositions of a SLIC specification are boolean 
functions

Suitable for expressing control-dominated properties 
e.g. proper sequence of events
can encode data values inside state



intint locked = 0; locked = 0; 

AcquireLock.callAcquireLock.call {{
if (locked==1) { if (locked==1) { 

abort;abort;
} else {} else {

locked=1;locked=1;
}}

}}

ReleaseLock.callReleaseLock.call {{
if (locked==0) { if (locked==0) { 

abort;abort;
} else {} else {

locked=0;locked=0;
}}

}}

Unlocked Locked Error

U

L

L

U

Usage Rule for Locking
State Machine SLIC
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Example Device Driver

do {

AcquireLock(&devices>writeListLock);
AcquireLock.call();
deviceNoOld = deviceNo; 
more = devices->Next;

if (more){
ReleaseLock(&devices->writeListLock);
ReleaseLock.call();
deviceNo++;

}
} while (deviceNoOld != deviceNo);

ReleaseLock(&devices->writeListLock);
ReleaseLock.call();

API usage

Does this device driver violate the locking rules ?

Invoke SLIC rules



C2bp: Boolean Abstraction

do {

AcquireLock(&devices>writeListLock);

if ( * ){
ReleaseLock(&devices->writeListLock);

}
} while ( * );

ReleaseLock(&devices->writeListLock);

deviceNoOld = deviceNo; 
more = devices->Next;

if (more){

...
deviceNo++;

while (deviceNoOld != deviceNo);



Bebop: Model Checking on P’ = BP(P,E)

do {

AcquireLock(&devices>writeListLock);

if ( * ){
ReleaseLock(&devices->writeListLock);

}
} while ( * );

ReleaseLock(&devices->writeListLock);
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L

L

U

U

U

E



Bebop: Model Checking on P’ = BP(P,E)

do {

AcquireLock(&devices>writeListLock);

if ( * ){
ReleaseLock(&devices->writeListLock);

}
} while ( * );

ReleaseLock(&devices->writeListLock);
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L

L
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U
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Newton: Path Feasibility

do {

AcquireLock(&devices>writeListLock);

deviceNoOld = deviceNo;
more = devices->Next;

if (more){
ReleaseLock(&devices->writeListLock);
...
deviceNo++;

}
} while (deviceNoOld != deviceNo);

ReleaseLock(&devices->writeListLock);
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Newton: New Predicate b for P’

do {

AcquireLock(&devices>writeListLock);

deviceNoOld = deviceNo; b = true;
more = devices->Next;

if (more){
ReleaseLock(&devices->writeListLock);
...
deviceNo++; b = b ? false : *;

}
} while (deviceNoOld != deviceNo); while(!b);

ReleaseLock(&devices->writeListLock);

b : (deviceNoOld == deviceNo)



C2bp: Refined Boolean Program

do {

AcquireLock(&devices>writeListLock);

b = true;

if (*){
ReleaseLock(&devices->writeListLock);

b = b ? false : *;
}

} while (!b);

ReleaseLock(&devices->writeListLock);



Bebop: Model Checking refined Program

do {

AcquireLock(&devices>writeListLock);

b = true;

if (*){
ReleaseLock(&devices->writeListLock);

b = b ? false : *;
}

} while (!b);

ReleaseLock(&devices->writeListLock);
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Complexity

Worst-case run-time complexity of Bebop and C2bp is 
linear in the size of the program's control flow graph, and 
exponential in the number of predicates used in the 
abstraction. 

O(E x 2g+l) 
E: # Edges in control flow graph
g+l: Maximal number of global 

and local variables in scope

Newton scales linearly with path length.
O(|p|), |p|: length of path 



Conclusion

Hard to specify OS model and SLIC specifications
Paper “Automatic Creation of Environment 
Models via Training”

Current versions of SDV: 
about 70% true driver errors, 30% warnings or 
informational errors (noise). 

>200K LOC ~ have hour
Full automatically 
Integrated as standard tool @ Microsoft

Improves SW Quality



Developer Comments

“This bug would be a really hard bug to find other than 
with a tool like SDV. There are just too many details to 
keep track of to have a good chance of finding it.”

“These are all real, difficult to discover bugs. Good 
work!”

“This bug would have been very difficult to find by 
inspection and it was one of those bugs that would be 
near-impossible to reproduce…”

“Fixing this bug will definitely stop some unexplainable 
and hard to debug random system crashes in the future.”
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