
Boolean and Cartesian
Abstraction for
Model Checking C Programs
Thomas Ball, Andreas Podelski, Sriram K. Rajamani @ MSR

Werner A. König

Modeling and Analysis of Software Systems

Prof. Dr. Stefan Leue
Chair for Software Engineering

01/25/2005
University of Konstanz

Outline

Overview
Project Components
History
Challenges
Boolean Programs and Rules
Example

Abstraction
Model Checking
Refinement

Complexity
Conclusion

What is SLAM?

SLAM is a software model checking project
@ Microsoft Research MSR

Goal:
Check automatically C programs (system software)
against safety properties using model checking.
Present property violations as error traces in the source
code.

Application domain: device drivers

Used internally inside Windows for driver verification.
Planned to be released for third-party driver developer.

Source Code

Testing
Development

Precise
API Usage Rules

(SLIC)

Software Model
Checking

Read for
understanding

New API rules

Drive testing
tools

Defects

100% path
coverage

Rules

Static Driver VerifierStatic Driver Verifier

XXX

ResultResult

Static Driver Verifier

SDVSDV
RulesRules

SLAMSLAM

OS modelOS model

other.hother.h

driver.hdriver.h

driver.cdriver.c

Driver sources

SLAM – Software Model Checking

Given a safety property to check on a C program P, the
SLAM process iteratively refines a boolean program
abstraction of P using three tools:

C2bp: predicate abstraction, abstracts P into boolean
program BP(P,E) with respect of predicates E over P

Bebop: tool for model checking boolean programs,
determine if ERROR is reachable in BP(P,E)

Newton: discovers additional predicates to refine boolean
program by analyzing feasibility of paths in P

P

B
Is ERROR reachable?

Yes, path p No

Return “No”
Is p feasible in P?

Is ERROR
reachable?

don’t knowNo, explanation Yes

Return “Yes”, p
Return

“don’t know”

Bebop

Newton

C2bp
Predicates from
instrumentation

Why Driver Domain?

Most drivers run within the Windows kernel
Can cause the kernel to crash or hang
Very complex and unpredictable environment
Drivers are mostly written by third-party developer
Driver failures are perceived by the end-user as a
windows failure

Automated analysis of drivers
Relatively small (< 100K LOC)
WDM usage rules could be applied for all drivers

SLAM - History
Initial discussions: Thomas Ball, Sriram K. Rajamani @ Microsoft Research
MSR
First technical report January 2000
Spring 2000

Bebop model checker
Summer 2000

Initial c2bp implementation
Model checked a safety property of an NT driver
Hand instrumented code/predicates discovered by hand

Autumn 2000
Predicate discovery (Newton)
Checked properties of drivers from DDK
Hand instrumented code/automatic discovery of predicates

Winter 2000
SLIC specification language

Spring 2001
Found first real error in production code
Total automation (manual model specifications)

TACAS 2001: Boolean and Cartesian Abstractions for Model Checking C
Programs, April 2001, Genoa, Italy.

Static Driver Verifier - History
Research Prototype SLAM Production Tool SDV

March 2002
Bill Gates Review

Mai 2002
Windows committed to hire two Ph.D.s in model checking to support
Static Driver Verifier

Autumn 2002
Joint Project between MSR and Windows
Initial release of SDV 1.0 to Windows (friends and family)
(SLAM engine, interface usage rules, kernel model, GUI and scripts)

April 2003
wide release of SDV 1.2 to Windows
(any internal driver developer)

November 2003
SDV 1.3 released at Driver Developer Conference (better integration,
more rules, better models)

Since 2004 SDV fully transferred to Windows (6 full-time positions)
Public release planned for end of 2004 ???

Bebop Model Checker

Model Checking Challenges

Thousands of lines of code
Recursive procedures
Infinite Control
Infinite Data

SLAM Solutions:
Boolean transformation
Predicate Abstraction

Boolean Programs

C program, but only boolean variables
Boolean variables represent finite sets of dataflow facts
All C control-flow primitives (condition, loops, …)
No pointers
Procedures with call-by-value parameter passing

Non-deterministic choice operator *
do {

b = true;

if (*){
b = b ? false : *;

}
} while (!b);

do {
deviceNoOld = deviceNo;
more = devices->Next;
if (more){

deviceNo++;
}

} while (deviceNoOld != deviceNo);

SLIC

Low-level specification language
Specifies temporal safety properties/rules
Defines state machine, that monitors behavior of a C
program
Atomic propositions of a SLIC specification are boolean
functions

Suitable for expressing control-dominated properties
e.g. proper sequence of events
can encode data values inside state

intint locked = 0; locked = 0;

AcquireLock.callAcquireLock.call {{
if (locked==1) { if (locked==1) {

abort;abort;
} else {} else {

locked=1;locked=1;
}}

}}

ReleaseLock.callReleaseLock.call {{
if (locked==0) { if (locked==0) {

abort;abort;
} else {} else {

locked=0;locked=0;
}}

}}

Unlocked Locked Error

U

L

L

U

Usage Rule for Locking
State Machine SLIC

The SLAM Process

c2bp

bebop

newton

prog. P’
prog. P

SLIC rules

boolean program

path p

predicates

predicatesslic

Example Device Driver

do {

AcquireLock(&devices>writeListLock);
AcquireLock.call();
deviceNoOld = deviceNo;
more = devices->Next;

if (more){
ReleaseLock(&devices->writeListLock);
ReleaseLock.call();
deviceNo++;

}
} while (deviceNoOld != deviceNo);

ReleaseLock(&devices->writeListLock);
ReleaseLock.call();

API usage

Does this device driver violate the locking rules ?

Invoke SLIC rules

C2bp: Boolean Abstraction

do {

AcquireLock(&devices>writeListLock);

if (*){
ReleaseLock(&devices->writeListLock);

}
} while (*);

ReleaseLock(&devices->writeListLock);

deviceNoOld = deviceNo;
more = devices->Next;

if (more){

...
deviceNo++;

while (deviceNoOld != deviceNo);

Bebop: Model Checking on P’ = BP(P,E)

do {

AcquireLock(&devices>writeListLock);

if (*){
ReleaseLock(&devices->writeListLock);

}
} while (*);

ReleaseLock(&devices->writeListLock);

U

L

L

L

U

U

U

E

Bebop: Model Checking on P’ = BP(P,E)

do {

AcquireLock(&devices>writeListLock);

if (*){
ReleaseLock(&devices->writeListLock);

}
} while (*);

ReleaseLock(&devices->writeListLock);

U

L

L

L

U

U

U

E

1

3

8
9

13

15

LOC

Newton: Path Feasibility

do {

AcquireLock(&devices>writeListLock);

deviceNoOld = deviceNo;
more = devices->Next;

if (more){
ReleaseLock(&devices->writeListLock);
...
deviceNo++;

}
} while (deviceNoOld != deviceNo);

ReleaseLock(&devices->writeListLock);

U

L

L

L

U

U

U

E

Newton: New Predicate b for P’

do {

AcquireLock(&devices>writeListLock);

deviceNoOld = deviceNo; b = true;
more = devices->Next;

if (more){
ReleaseLock(&devices->writeListLock);
...
deviceNo++; b = b ? false : *;

}
} while (deviceNoOld != deviceNo); while(!b);

ReleaseLock(&devices->writeListLock);

b : (deviceNoOld == deviceNo)

C2bp: Refined Boolean Program

do {

AcquireLock(&devices>writeListLock);

b = true;

if (*){
ReleaseLock(&devices->writeListLock);

b = b ? false : *;
}

} while (!b);

ReleaseLock(&devices->writeListLock);

Bebop: Model Checking refined Program

do {

AcquireLock(&devices>writeListLock);

b = true;

if (*){
ReleaseLock(&devices->writeListLock);

b = b ? false : *;
}

} while (!b);

ReleaseLock(&devices->writeListLock);

U

L

L

L

U

U

L

U

U

b

b

b

b

b

!b

!b

!b

!b

P

B
Is ERROR reachable?

Yes, path p No

Return “No”
Is p feasible in P?

Is ERROR
reachable?

don’t knowNo, explanation Yes

Return “Yes”, p
Return

“don’t know”

Bebop

Newton

C2bp
Predicates from
instrumentation

Complexity

Worst-case run-time complexity of Bebop and C2bp is
linear in the size of the program's control flow graph, and
exponential in the number of predicates used in the
abstraction.

O(E x 2g+l)
E: # Edges in control flow graph
g+l: Maximal number of global

and local variables in scope

Newton scales linearly with path length.
O(|p|), |p|: length of path

Conclusion

Hard to specify OS model and SLIC specifications
Paper “Automatic Creation of Environment
Models via Training”

Current versions of SDV:
about 70% true driver errors, 30% warnings or
informational errors (noise).

>200K LOC ~ have hour
Full automatically
Integrated as standard tool @ Microsoft

Improves SW Quality

Developer Comments

“This bug would be a really hard bug to find other than
with a tool like SDV. There are just too many details to
keep track of to have a good chance of finding it.”

“These are all real, difficult to discover bugs. Good
work!”

“This bug would have been very difficult to find by
inspection and it was one of those bugs that would be
near-impossible to reproduce…”

“Fixing this bug will definitely stop some unexplainable
and hard to debug random system crashes in the future.”

References
Automatic Predicate Abstraction of C Programs, Thomas Ball, Rupak Majumdar, Todd Millstein, Sriram K. Rajamani, PLDI 2001, SIGPLAN Notices
36(5), pp. 203-213.
Automatic Predicate Abstraction of C Programs (Presentation PLDI 2001)
Automatically Validating Temporal Safety Properties of Interfaces, Thomas Ball, Sriram K. Rajamani, SPIN 2001, Workshop on Model Checking of
Software, LNCS 2057, May 2001, pp. 103-122.
Automatically Validating Temporal Safety Properties of Interfaces (Presentation SPIN 2001)
Bebop: A Path-sensitive Interprocedural Dataflow Engine, Thomas Ball, Sriram K. Rajamani, PASTE 2001.
Bebop: A Path-sensitive Interprocedural Dataflow Engine (Presentation PASTE 2001)
Bebop: A Symbolic Model Checker for Boolean Programs, Thomas Ball, Sriram K. Rajamani, SPIN 2000 Workshop on Model Checking of Software
LNCS 1885, August/September 2000, pp. 113-130.
Bebop: A Symbolic Model Checker for Boolean Programs (Presentation SPIN 2000)
Boolean and Cartesian Abstractions for Model Checking C Programs, Thomas Ball, Andreas Podelski, Sriram K. Rajamani, TACAS 2001, LNCS
2031, April 2001, pp. 268-283.
Boolean and Cartesian Abstraction for Model Checking C Programs (Presentation TACAS 2001)
Boolean Programs: A Model and Process for Software Analysis, Thomas Ball, Sriram K. Rajamani, MSR Technical Report 2000-14.
Checking Temporal Properties of Software with Boolean Programs, Thomas Ball, Sriram K. Rajamani, Workshop on Advances in Verification (with
CAV 2000).
From Symptom to Cause: Localizing Errors in Counterexample Traces, Thomas Ball, Mayur Naik, Sriram Rajamani (POPL 2003).
From Symptom to Cause: Localizing Errors in Counterexample Traces (Presentation POPL 2003)
Generating Abstract Explanations of Spurious Counterexamples in C Programs, Thomas Ball, Sriram K. Rajamani, MSR-TR-2002-09.
Parameterized Verification of Multithreaded Software Libraries, Thomas Ball, Sagar Chaki, Sriram K. Rajamani, TACAS 2001,
LNCS 2031, April 2001, pp. 158-173.
Parameterized Verification of Thread-safe Libraries (Presentation TACAS 2001)
Polymorphic Predicate Abstraction, Thomas Ball, Todd Millstein, Sriram K. Rajamani, MSR-TR-2001-10.
Refining Approximations in Software Predicate Abstraction, Thomas Ball, Byron Cook, Satyaki Das, Sriram K. Rajamani. TACAS 2004.
Relative Completeness of Abstraction Refinement for Software Model Checking, Thomas Ball, Andreas Podelski, Sriram K. Rajamani, TACAS
2002, LNCS 2280, April 2002, pp. 158-172.
Secrets of Software Model Checking (Presentation SAS 2002)
SLIC: A Specification Language for Interface Checking (of C), Thomas Ball, Sriram K. Rajamani, MSR-TR-2001-21.
Specifying and Checking Properties of Software (Presentation CSTB's July 2001 Symposium on Fundamentals of Computer Science, July 2001)
Speeding Up Dataflow Analysis Using Flow-Insensitive Pointer Analysis, Stephen Adams, Thomas Ball, Manuvir Das, Sorin Lerner, Sriram K.
Rajamani, Mark Seigle, Westley Weimer. SAS 2002, LNCS 2477.
The SLAM Project: Debugging System Software via Static Analysis, Thomas Ball, Sriram K. Rajamani, POPL 2002, January 2002, pages 1-3.
The SLAM Project: Debugging System Software via Static Analysis (Presentation POPL 2002)
The SLAM Toolkit, Thomas Ball, Sriram K. Rajamani, CAV 2001.

