Internet Networking -

Measuring Distance and Bandwidth between hosts

Werner König

Content

- I. Introduction
- II. Current Techniques
- III. Packet Pair
- IV. New Techniques
- V. Conclusion
- VI. References

I. Metrics

- Bottleneck link bandwidth
 - Higher order metrics are composed of lower order metrics
 - Bottleneck link bandwidth
 - \rightarrow Available bandwidth
 - \rightarrow TCP throughput
 - \rightarrow Application performance
- Distance / Latency (ping, traceroute)

I. Motivation

Identify network bottlenecks & high latency → replace them / bypass them / adapt to them.

Examples:

- Network administration
- Choose the best connection (clients, proxy)
- Choose the best network interface (Mobile Computing)
- Dynamic multicast routing trees

II. Bottleneck bandwidth algorithms

II. Troughput

Amount of data a transport protocol can transfer per unit of time

- Other metrics effects on throughput, but not on bandwidth (e.g. packet drop rate)
- Depends on application (e.g. slow CGI-script)
- Wastes network resources (e.g. TCP)
- Slowly (e.g. TCP increase slowly sending rate until one is dropped)

II. Pathchar

- Van Jacobson, Network Research Group, Lawrence Berkeley National Laboratory
- Measure round trip time → Software only on one host
- Varying packet sizes Ethernet: s = 45 sizes, 32-1500 bytes

$$s = \left\lfloor \frac{MTU}{32} \right\rfloor - 1$$

• Correlate round trip times with packet sizes to calculate bandwidth

II. Pathchar

• Active algorithm

sends p = 32 packets/size

~ 1 MB/hop, 10 hops \rightarrow 10 MB independent of bandwidth

 \rightarrow need high amount of bandwidth

• Serial algorithm

waits for acknowledgement before sending next packet

 \rightarrow slow

$$t = \sum_{i=1}^{h} p \bullet s \bullet l_i$$

 l_i = round trip latency h = #hopsE.g. 10 hops, Ø latency = 10ms \rightarrow t = 144 sec

Werner König

III. Packet Pair

III. Packet Pair

• Two Packets are queued next to each other at the bottleneck link, then they exit with

$$\Delta t = \frac{S_1}{b_{bnl}} \rightarrow \text{bottleneck separation} \rightarrow b_{bnl} = \frac{S_1}{\Delta t}$$

• If other packtes queue in between

$$b_{bnl} = \frac{S_1 + S_x}{\Delta t}$$
 $S_x = \text{total size of other packets}$

Werner König

III. Packet Pair

Werner König

III. Packet Pair

Internet Protocols SS03

Slide 13

III. Packet Pair Assumptions

- For ideal results
 - Packets must be same size
 - Packet queued together at bottleneck link and traveled same path
 - FIFO, store and forward router queuing
 - No queuing downstream of bottleneck link
- Otherwise alg. produce noise
- Must filter out noise

Packet

Pair Filtering

III. Packet Pair Filtering

- Filtering out noise caused by time compressed and extended packets
- Valid samples are closely clustered around the correct value
- Kernel density estimator algorithm
- Statistical valid
- Simple & fast to compute

III. Packet Pair – Pros

- + Measures true bandwidth instead of throughput
- + Does not send massive amounts of data unlike pathchar
- + Requires only few packet round trips unlike TCP
- + Does not cause packet loss unlike TCP

III. Packet Pair – Cons

- Rarely used
- Not scalable
- Slow
- Not robust on all traffic
- Not flexible to bandwidth changes
- Difficult to deploy (sender & receiver)
- Not studied under controlled condition

IV. Goals

• Make Packet Pair algorithms practical and robust enough to be widely and frequently used

• Derive simple algorithms from statistically valid network models

IV. New features

- Gradual bandwidth calculation
 - Use a packet window to measure bandwidth over varying time scales
- Receiver Only Packet Pair
 - Accuracy without deployment of special software at two nodes
- Potential Bandwidth Filtering
 - Robustly handle all packet sizes and rates

IV. Packet Window

Use *w* packets into the past to calculate the bandwidth at a particular packet

- + Fast, need only few packets for estimation
- + Agile, only recent packets are used
- Reduce accuracy with smaller windows

IV. Receiver Only Packet Pair

- Take measurements only at receiver
- Avoid having to deploy special software at two hosts
- Avoid inaccuracy of Sender-Based Packet Pair
- Can only measure bandwidth in the download direction

IV. Potential Bandwidth Filtering

- Problem: Existing traffic may be unsuitable for Packet Pair
 - Small or slow sent packets can mislead Packet Pair implementations
 - Example: TCP acknowledgements $b_{bnl} = \frac{S_1}{\Lambda t}$
- Solution: Filter out small or slowly sent packets
 - PBF uses robust statistical methods to filter

IV. Potential Bandwidth Filtering

IV. Simulation Results

• Accuracy of Receiver-Only Packet Pair

Timings Taken At	Error
Sender	1200.00%
Receiver/Sender	0.09%
Receiver	0.08%

• Accuracy of Potential Bandwidth

	Timings Taken At	Filtering	Bandwidth	Error
	Sender	Regular	10Mb/s	44.2%
	Sender	PBF	10Mb/s	7.8%
	Receiver/Sender	Regular	500Kb/s	435.0%
	Receiver/Sender	PBF	500Kb/s	0.0%
3/10/99				

V. Conclusion

• Current bandwidth measurement techniques have several problems

- Propose statistically robust algorithms:
 - Fast estimates
 - Agile identification of bandwidth changes
 - More flexibility in deployment
 - Working with different traffic types

Werner König

VI. References

Kevin Lai, Mary Baker. Measuring Bandwidth. Department of Computer Science, Stanford University, 1999.

Kevin Lai, Mary Baker. Measuring Link Bandwidths Using a Deterministic Model of Packet Delay. Department of Computer Science, Stanford University, 2000.

Kevin Lai, Mary Baker. Nettimer: A Tool for Measuring Bottleneck Link Bandwidth. Department of Computer Science, Stanford University, 2001.

Van Jacobson. Pathchar - a tool to infer characteristics of Internet paths. Network Research Group, Lawrence Berkeley National Laboratory, 1997

Vern Paxson. Measurements and Analysis of End-to-End Internet Dynamics. PhD thesis, University of California, Berkeley, 1997

Stephen Coast, http://www.fractalus.com/steve/stuff/ipmap.